OSCR :: CHEAT SHEET

The oSCR package, pronounced "Oscar", provides a set of functions for working with Spatial Capture Recapture (SCR) models.

Getting the package

Package hosted on GitHub

library (devtools) install_github("jaroyle/oSCR") library(oSCR)

Workflow

- Every model you run on oSCR has the following 4 basic steps.
- Modeled after unmarked workflow

1. Format the sampling data

One file for each one:

- Spatial encounter histories
- Detector information

2. Define and format the State Space

- Size and resolution of the *state space*
- Spatial covariates for density

3. Analyze the data – model fitting

- Likelihood based: use AIC to do model selection
- No need to use other packages, oSCR has helper functions to do the model selection.
- 4. Post processing model output for

inference:

This means that now that you have your parameters all you have to do is interpret your results!

Modelling framework

A. Single-session models

 Repeated sample occasions on a single population of individuals using a single array of traps.

B. Multi-session models

- Data grouped in strata or groups which are independent in space or time.
- **C. Explicit sex-structured models**
- D. Multi-session sex-structured models

1. Format sampling data

Before starting to use oSCR you need to format the datafiles in a scrFrame which consists of two basic spreadsheets: edf and tdf.

1.1 edf: encounter data file.

- Single data frame.
- Each row has individual detection events.
- Dark blue = required; light blue = optional.
- Columns contain capture information:
 - Session (Se) - Sex (Sx)
 - Date (Da) Individual ID (ID)
 - Time (Ti) Occasion (Oc)
 - Detector* (De) _

- **1.2 tdf:** trap deployment data file.
 - A **list** with information for each session (tdf1, tdf2, ...).
 - Each row is a trap.
 - Columns contain trap information
 - Detector* (De) 1, 2, 3, ... n)
 - X (required, UTM) - Separator (e.g., /)
 - Y (required, UTM) - Trap level covariates Binary trap operation (different column per data for malfunctions, covariate)

*Notice that both edf and tdf have the same **Detector** (De) column that MUST match (same name, class, relational database).

1.3 data2oscr(): is a function that links **edf** and **tdf** files via the detector* names. Creates scrFrame.

- data <- data2oscr(</pre>
- edf. # encounter data file
 - tdf. # list containing trap deployment file
 - sess.col*, # session col number or name in edf
 - id.col*, # individual ID col # or name in edf
 - **occ.col**, # occasion col number or name in edf
 - trap.col*, # detector col number or name in edf
 - sex.col*, # sex col number or name in edf
 - **sex.nacode**, # character for unknown sex in edf
 - K, # number of occasions
 - ntraps, # number of traps

trapcov.names, # vector of un-numbered cov names

tdf.sep) # separator (e.g., "/")

* which(colnames(edf) %in% "name of column in edf")

1.4 Summary functions for scrFrame :

 scrFrame contains information from the edf and tdf via detector names.

sf<-data**\$**scrFrame

sf\$caphist Array of individual-by-trap-by-occasion (n x J x K). Binary or counts.

sf\$traps Data frame containing at least trap ID and coordinates of traps. Best with UTM.

sf\$indcovs Sex data (0 female, 1 male) or any bivariate covariate. NAs allowed.

sf\$trapCovs List of session specific trap covariates. Row per trap, and column per covariate.

sf\$sigCovs A data frame of covariates that affect space use (sigma, σ).

sf\$trapOperation A list of session specific information on trap operational data.

sf\$occasions A vector of number of occasions per session .

sf\$mmdm Mean maximum distance moved pooled across sessions. $\frac{1}{2}$ mmdm ~ σ

sf\$mdm Maximum distance moved pooled across sessions.

\$telemetry Telemetry object for fitting resource selection models.

1.5 Summary of scrFrame

sf

S1	
n individuals 47	
n traps 38	
n occasions 8	
	S1
avg caps	3.21
avg spatial caps	2.02
mmdm	4.65

Page 1

rotations (required if problems were found:

oSCR : : cheat sheet

1.4.1 Navigating the scrFrame

Capture history

- Session 1, all individuals, all traps, occasion 3 sf\$caphist[[1]][,,3]
- Session 1, individual 4, all traps, all occasions sf\$caphist[[1]][4, ,]

Traps

• Session 1 trap coordinates sf\$traps[[1]]

Trap covariates

 Trap covariate df session 1 occasion 4 sf\$trapCovs[[1]][[4]]

Trap operation

 Session 1 trap trap operation matrix sf\$trapOperation [[1]]

Covariates that affect sigma (σ)

 These covariates are NOT session specific. This is a sessions=rows dataframe sf\$ sigCovs[[1]]

Vectors and single numbers

sf\$ occasions sf\$mmdm sf\$mdm

Datasets available

- > data(package = "oSCR")
- > data(ocelot)
- > data("beardata")
- > data("nybears")
- > data("peromyscus")
- > data("mink")

2. Create the State Space

The **State Space (S)** is the core element of SCR models. It defines where individuals can live and should represent activity centers of all sampled individuals.

ssDF: the State Space Data Frame

- List with spatially explicit information from each session.
- At least include the coordinates (X, Y) of the discrete state space (UTM).
- Can include spatial covariates for a continuous state space to study variation in Density.
- Non habitat can be removed by removing unwanted coordinates (e.g., parking lot).

х	Y	Cov.1	Cov.2	Cov.n

2.1. make.ssDF():

- Remember that $\frac{1}{2}$ mmdm ~ σ
- Extracts covariates and removes non habitat

ss <- make.ssDF(scrFrame, buffer, #~3 to 4σ around traps

res) $\# < \hat{\sigma}$

2.2. Plot the state space

Plot state space
 Plot state space & traps
 plot(ss)
 plot(ss, sf)

Vary the buffer and/or resolution

Varying buffer, fixed resolution

make.ssDF(sf, buffer = 1, res = 0.5)
make.ssDF(sf, buffer = 3, res = 0.5)

♀ Fixed buffer, varying resolution

make.ssDF(sf,

buffer = 3.

res = 0.5)

make.ssDF(sf, buffer = 3, res = 0,1)

3. Fit the model

3.1. Single-session model: Fit the model with oSCR.fit():

sf <- data\$scrFrame
mod <- oSCR.fit(model,</pre>

scrFrame, #sf

ssDF, …)

See pg. 3 for null model and multi-session models.

model is a list with 3 basic formulations:

list(D ~ 1, pO ~ 1, sig ~ 1)

Variation in...Dpixel densityp0baseline encounter prob/ratesigsigma (o)

3.2. Backtransform to the real scale

get.real(model, newdata, d.factor, type)

model	fitted model
newdata	Optional new data object for predictions
d.factor	optional scale the estimates to a different resolution
type	density ("dens"), detection probability ("det"), sigma("sig")

"dens"	"det"	"sig"
Sex-specific estimates of density, and the density estimates are per pixel.	Estimate of detection at distance from activity center = 0.	Estimates of the spatial scale of detection.

d.factor

OSCR : : CHEAT SHEET

Page 3 describes the specific functions and workflow for the null model and multi-session model in the oSCR package.

Model specifics

Null model (SCR_o)

- The null model assumes homogeneous density which means all pixels have the same expected density.
- For additional arguments see ?oSCR.fit()

mod1 <- oSCR.fit(list(D ~ 1.</pre> $p0 \sim 1$, sig ~ 1), scrFrame, #scrFrame object ssDF, #ssDF object ...) #other arguments mod1 #summary

> If you included sex as a covariate in the scrFrame:

- Sex ratio psi () will be included in the summary
- Can compare AIC with and without sex effects

Multi-session model

Are your data organized in multi-sessions and you want to analyze all of them jointly?

Spatial sessions: different study areas (e.g., parks, trapping grids)

Temporal sessions: same areas different times (e.g. seasons, years)

Session specific **population size** N_a (g=group/session)

- Test for differences among sessions using AIC.
- Can share parameters among sessions or not.

- The multi-session model follows similar steps as the single session model.
- The **edf** files from multiple sessions may be merged into one data frame prior to data2oscr
- edf <- rbind(edf1, edf2, ...)
- The **tdf** files must be separate files for each session.

1. data2oscr for multi-session scrFrame data <- data2oscr(</pre>

edf, # include session column list(tdf1, tdf2, ...), #tdffiles sess.col*, # session col in edf id.col*, # individual ID col in edf **occ.col**, # occasion col in edf trap.col*, # detector col in edf sex.col*, # sex col in edf sex.nacode, # unknown sex in edf K, # vector with occasions per session **ntraps)** # vector with traps per session

sf <- data\$sf

sf # summary info per session (S1, S2..)

1.2. Summary of multi-session scrFrame

		S1	S2	S 3	S4		
n in	ndividual	s 77	60	108	54		
n ti	raps	50	50	50	50		
n oo	ccasions	7	5	6	4		
			2	51	S2	S 3	S4
avg	caps		1.9	91 1	. 47	1.71	1.37
avg	spatial	caps	1.3	30 1	. 15	1.27	1.13
mmdr	n		2.5	57 2	. 32	1.76	2.84

Pooled MMDM: 2.21

1.3. Plot spatial captures in a multi-session scrFrame

• Use plot(sf) to plot a spatial capture per session

par(mfrow=c(1,n)) # n = sessionsplot(sf) # plot all sessions

2. Make the State Space Data Frame of a multi-session scrFrame

ss <- make.ssDF(</pre>

6

scrFrame, # multi-session buffer, #buffer width res) #state space resolution

• You can vary the buffer and resolution as in the single-session model.

?make.ssDF() # Look at the help file for other arguments

• Visualize the state space

par(mfrow=c(1,n)) # n = sessionsplot.ssDF(ss, # state space sf) # traps

3. Model	fitting	
 Specify among s - 	models that consider or no sessions. fixed vs. session specific D fixed vs. session specific p fixed vs. session specific s	ot variation 0 pace use (σ)
Model	Algebra	In oSCR.fit
Density	$log(D(s_i)) = \beta_0$	D \sim 1
Density	$log(D(s_i)) = \beta_0 + \beta_{1(g)}Session_g$	D \sim session
Detection	$logit(p_0) = \alpha_0$	p0 \sim 1
Detection	$logit(p_0) = \alpha_0 + \alpha_{1(g)}Session_g$	pO \sim session

Include all models into a list using fitList.oSCR():

sig \sim 1

sig \sim session

f1 <- fitList.oSCR(</pre>

 $log(\sigma) = \gamma_0$

Space use

Space use

mods. # list of fitted models rename) # if TRUE models are renamed with sensible names

 $log(\sigma) = \gamma_0 + \gamma_{1(g)} Session_g$

• Compare multiple models ms <- modSel.oSCR(f1)</pre>

- Generate an AIC table to compare multiple models ms\$aic
- Generate a coefficient table ms\$coef.tab

• Generate a model averaged coefficients ma <- ma.coef(ms) # include a</pre> modSel.oSCR object

3.1. Back transform to the real scale

top.model <- m3

pred.df <- data.frame(session =</pre> factor (c(1, 2, 3, 4, ...)))

pred.det <- get.real(</pre> model = top.model, type = "det", newdata = pred.df)