parsnip is a new tidymodels package that generalizes model interfaces across packages. The idea is to have a single function interface for types of specific models (e.g. logistic regression) that lets the user choose the computational engine for training. For example, logistic regression could be fit with several R packages, Spark, Stan, and Tensorflow. parsnip also standardizes the return objects and sets up some new features for some upcoming packages.
Max Kuhn is a software engineer at Posit (née RStudio). He is working on improving R's modeling capabilities and maintaining about 30 packages, including caret. He was a Senior Director of Nonclinical Statistics at Pfizer and had been applying models in the pharmaceutical and diagnostic industries for over 18 years. Max has a Ph.D. in Biostatistics. He, and Kjell Johnson, wrote the book Applied Predictive Modeling, which won the Ziegel award from the American Statistical Association. Their second book, Feature Engineering and Selection, was published in 2019, and his book Tidy Models with R, was published in 2022.