Grow your data science skills at posit::conf(2024)

August 12th-14th in Seattle

The creation of research reports and manuscripts is a critical aspect of the work conducted by organizations and individual researchers. Most often, this process involves copying and pasting output from many different analyses into a separate document. Especially in organizations that produce annual reports for repeated analyses, this process can also involve applying incremental updates to annual reports. It is important to ensure that all relevant tables, figures, and numbers within the text are updated appropriately. Done manually, these processes are often error prone and inefficient. R Markdown is ideally suited to support these tasks. With R Markdown, users are able to conduct analyses directly in the document or read in output from a separate analyses pipeline. Tables, figures, and in-line results can then be dynamically populated and automatically numbered to ensure that everything is correctly updated when new data is provided. Additionally, the appearance of documents rendered with R Markdown can be customized to meet specific branding and formatting requirements of organizations and journals. In this presentation, we will present one implementation of customized R Markdown reports used for Accessible Teaching, Learning, and Assessment Systems (ATLAS) at the University of Kansas. A publicly available R package, ratlas, provides both Microsoft Word and LaTeX templates for different types of projects at ATLAS with their own unique formatting requirements. We will discuss how to create brand-specific templates, as well as how to incorporate the templates into an R package that can be used to unify report creation across an organization. We will also describe other components of branding reports beyond R Markdown templates, including customized ggplot2 themes, which can also be wrapped into the R package. Finally, we will share lessons learned from incorporating the R package workflow into an existing reporting pipeline.

Subscribe to more inspiring open-source data science content.

We love to celebrate and help people do great data science. By subscribing, you'll get alerted whenever we publish something new.