In current deep learning with Keras and TensorFlow, when you’ve mastered the basics and are ready to dive into more involved applications (such as generative networks, sequence-to-sequence or attention mechanisms), you may find that surprisingly, the learning curve doesn’t get much flatter. This is largely due to restrictions imposed by TensorFlow’s traditional static graph paradigm. With TensorFlow Eager Execution, available since summer and announced to be the default mode in the upcoming major release, model architectures become more flexible, readable, composable, and last not least, debuggable. In this session, we’ll see how with Eager, we can code sophisticated architectures like Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs) in a straightforward way.

View Materials

Subscribe to more inspiring open-source data science content.

We love to celebrate and help people do great data science. By subscribing, you'll get alerted whenever we publish something new.